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INTRODUCTION 

The problem of runs is one of long history 
among hydrologists. Classically a run is defined 
as a sequence of observations of the same kind 
preceded and succeeded by one or more ob- 
servations of a different kind. 

Considering a sequence of random variables 
x,, n -- 0, 1, 2, .... and choosing a constant 
Xo, one may arbitrarily classify the nth year 
as a surplus year if x• > Xo and call x• -- Xo 
the surplus. Similarly if x, •_ Xo, the nth year 
is a deficit year with the deficit Xo -- x, [Downer 
et al., 196.7]. 

A consecutive sequence of k surplus years 
preceded and succeeded by a deficit year is 
called a run length of length k, and the sum 
of the surpluses x• -- Xo over such a run length 
is called a surplus run sum. A deficit run length 
and a deficit run sum are similarly defined. 

Four specific problems will be studied here: 

1. The mean number of times a river may 
reach an arbitrary discharge during an arbitrary 
time. 

2. The mean time that a river spends between 
successive upcrossings or downcrossings of an 
arbitrary level. 

3. The mean duration of an upward ex- 
cursion of a river over an arbitrary level and 
the mean duration of a downward excursion of a 
river below an arbitrary level. This is equivalent 
to studying the mean run length and the mean 
deficit run length with respect to an arbitrary 
level. 

4. The mean volume of water that a river 
may carry during an arbitrary time over an 
arbitrary stage. 

* Now at the Instituto Venezolano. de Investi- 
gaciones Cientificas, Caracas, Venezuela. 

The operating policy of a water resources 
system is influenced by the sequence of hydro- 
logic events. Consider two series of hydrologic 
data having the sarne long-term average and 
variance. One series differs from the other by 
having longer runs of very low flow counter- 
balanced by runs of very high inflow. Although 
in both the storage requirements for a given 
degree of regulation may be similar, the operat- 
ing policies would be quite different and as a 
result the benefits derived from the system under 
different operating policies would be markedly 
dissimilar [Buras, 1966]. Part of the theory 
used in this study has been previously applied 
with good results to a series of monthly levels 
of the 0rinoeo River [Rodriquez-Iturbe, 1968]. 
In this brief report, the hydrologic applications 
of the theory have been expanded and are 
illustrated here, making use of annual discharge 
data of the Rhine River at Basle. 

RI-IINE RIVER STUDY 

If the number C• of crossings is finite, then 
C• = U• + D•, U• and D, being the number 
of uperossings and downcrossings, respectively, 
of an arbitrary level u. 

Let /j(t) denote a real-valued, normal, con- 
tinuous parameter, stationary process having 
for convenience zero mean. The 2ith moment of 
the spectral function F(,•) is denoted by 

X2, = o•2'dF(•o), i= 0,•1,2,..- (1) 

where •o is the angular frequency. 
The mean number of crossings of the level 

u by /j(t) during the interval (O,T) is given 
by Rice [1954] as 

T (X• __ __ e-,• / 2xo 
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Fig. 1. Representative portion of the series of annual flows of the Rhine River at Basle. 

where ;ks may be estimated by the method given 
by Rod•'{guez-Iiu•'be [1968] and ko is the 
variance of $ (l). 

Equation 2 was applied to the series of 
annual flows of the Rhine River at Basle con- 

strutted with the 150 years of data given by 
Yevjevich [1963]. Figure 1 shows part of this 
series, which has a mean of 36,253 ft•/sec and 
a variance of 33.10 x 166 (ft•/sec) •. A X •' test 
performed for this series shows there is a prob- 
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Fig. 2. Mean number of upcrossings at different levels. Series of annual flows of the Rhine 
River at Basle. 
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ability of 92% that such a sample comes from 
• normal population. Figure 2 shows the theo- 
retical and actual number of upcrossings at dif- 
ferent levels for the series of annual flows of 

the Rhine River. 

Let F•(t) denote the distribution function 
of the duration of an upward excursion over 
certain level or in other words the distribution 

of the mean run length, and let F•(t) be the 
distribution function of the duration of the 

interval betwen an arbitrarily chosen upcrossing 
and the next upcrossing. The functions 
and F.o(t) halve not yet been obtained in an 
explicit manner, but Cramer and Leadbetter 
[1967] have calculated exact expressions for 
their moments, which for the mean values have 
been simplified by Rodr{guez-Iturbe [1968] in 
order to apply them to hydrologic problems. 

LETTERS 

For hydrologic time series the mean values of 
F• (t) and F.,. (t) may be written as 

o •' t dF•(t) = u-'[P{}(0) > u}] (3) 
t = 

where 

t• = E[U•(1)] = • k•/ e-•/•xo (S) 
In the case that •(t) has a nonzero mean m 

it is only necessary to replace u by u -- m in 
the previous fomulas, since •(t) crones the 
level u when •(t) -- m crosses u -- m. 

Fibres 3 •nd 4 shows the theoretical cu•es 
obtained from equations 3 and 4 and the actual 
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MEAN TIME BETWEEN SUCCESSIVE UPCROSSINGS 

Mean time between successive upcrossings of a given level. Series of annual flows 
of the Rhine River at Basle. 
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Fig. 4. Mean duration of the length of an 
upward excursion over • certain level. Series of 
annual flows of the Rhine River at Basle. 

values for the series of annual flows of the 

Rhine River. 

The area cut off above an arbitrary level 
by the process has been investigated by Cramer 
and Leadbetter [1967] under the name of Z, -- 
exceedance measures. Defining for any nonnega- 
tive integer n 

..(t) = (•(t) -u) • if •(t) > 0} (½) = 0 otherwise 

and 

lf• •' ,• = o, •, s, ... (7) 

Zo will be the proportion of time of (O,T) that 
•(t) spends above the level u. TZ•(T) is just 
the area cut off by the process above the level 
u in 0 •_ t •_ T as indicated by the shaded 
area in Figure 1. 

The mean of Z•(t) is given by 

where 

ß (x) = 

K = (u- m)%o 

(s) 

and m represents the mean of the process. For 
the area cut off above a level one gets 

E[TZ•(T)] 

= TXol'•[f:x•(x)•x -- Kff I 
= T)to1/2[f; --cI:'t(x)dx--K f: (I:)(x)dx] 
= Tkr,•/2[•(K)- K d- KF(K)] (9) 

where F(.) denotes the normal cumulative dis- 
tribution function. The variance of Z,(t) has 
been evaluated by Cramer and Leadbetter 
[1967], but it will not be used in this paper. 

The volume of water that the Rhine carried 

during 150 years over several arbitrary levels 
has been computed in two ways: by using equa- 
tion 9 and by measuring the shaded area shown 
in Figure 4 by means of a planimeter. 

Figure 5 shows • comparison of the results 
obtained where there is an average difference 
of 3% between the theoretical curve and the 
computed points. 

COMMENTS 

Stationarity and normality are the main as- 
sumptions for the practical use of the tech- 

1014 

1013 

IO 

--THEORY 
ß ACTUAL VALUES FOR 

RHINE RIVER, 

Q (ft •/sec xlO -a) 

Fig. 5. Mean volume of water discharged by 
the Rhine River over different levels during a 
period of 150 years. 
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niques applied in this paper. The subject of sta- 
tionarity poses questions such as the length of 
the time scale to which one has to test station- 

arity when dealing with hydrologic time series, 
and it also raises questions such as the statisti- 
cal character of cycles in hydrology. The exist- 
ence of the annum cycle in many hydrologic 
data does not necessarily make these series 
nonstationary. A time series with a. cyclic com- 
ponent may or may not be stationary [Rod- 
r{guez-Iturbe, 1968]. Some considerations about 
stationarity when dealing with hydrologic time 
series will be the subject of a future paper by 
the author, and the problems previously noted 
will be studied in detail. Cramer and Leadbetter 

[1967] have extended the theory used in this 
paper for the case that the nonstationary char- 
acter of a time series is due to a cyclic compon- 
ent. 

Although many hydrologic data are not 
Gaussian, the approximation appears to provide 
reasonable estimates of the crossing and run 
characteristics of some time series [Nordin, 
1968]. One should note that although the prob- 
ability distributions of the variables studied in 
this paper are not known, the moments are use- 
ful not only in their own right but also in pro- 
viding bounds on, and approximations to, prob- 
abilities of interest. 
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